Adding Calibration Datasets#
Class DataReader for AMD Quark Quantizer#
AMD Quark for ONNX utilizes ONNX Runtime’s CalibrationDataReader for normalization during quantization calibration. The following code is an example of how to define the class for the calibration data loader.
import onnxruntime
from onnxruntime.quantization.calibrate import CalibrationDataReader
class ImageDataReader(CalibrationDataReader):
def __init__(self, calibration_image_folder: str, input_name: str,
input_height: int, input_width: int):
self.enum_data = None
self.input_name = input_name
self.data_list = self._preprocess_images(
calibration_image_folder, input_height, input_width)
# The pre-processing of calibration images should be defined by users.
# Recommended batch_size is 1.
def _preprocess_images(self, image_folder: str, input_height: int, input_width: int, batch_size: int = 1):
data_list = []
'''
The pre-processing for each image
'''
return data_list
def get_next(self):
if self.enum_data is None:
self.enum_data = iter([{self.input_name: data} for data in self.data_list])
return next(self.enum_data, None)
def rewind(self):
self.enum_data = None
input_model_path = "path/to/your/resnet50.onnx"
output_model_path = "path/to/your/resnet50_quantized.onnx"
calibration_image_folder = "path/to/your/images"
input_name = 'input_tensor_name'
input_shape = (1, 3, 224, 224)
calib_datareader = ImageDataReader(calibration_image_folder, input_name,
input_shape[2], input_shape[3])
Calibration Data Path for AMD Quark Quantizer#
AMD Quark for ONNX supports specifying the path to calibration datasets, making it easy to load them for quantization. Currently, this feature only supports data in .npy format. For detailed guidance on creating calibration datasets in NPY format, see Generating NPY Calibration Data.
Note
No preprocessing is applied to the calibration datasets after loading. Ensure that the calibration data is stored in the following format:
For Single-Input Models:#
Place the calibration data files in a directory as follows:
calibration_data/
calib_000001.npy
calib_000002.npy
calib_000003.npy
calib_000004.npy
calib_000005.npy
...
For Multi-Input Models:#
Organize the calibration data in sub-directories named after the input models:
calibration_data/
input1_name/
calib_000001.npy
calib_000002.npy
calib_000003.npy
calib_000004.npy
calib_000005.npy
...
input2_name/
calib_000001.npy
calib_000002.npy
calib_000003.npy
calib_000004.npy
calib_000005.npy
...
...
Example Code:#
import onnxruntime
from quark.onnx import ModelQuantizer
from quark.onnx.quantization.config.config import Config, get_default_config
input_model_path = "path/to/your/resnet50.onnx"
output_model_path = "path/to/your/resnet50_quantized.onnx"
calib_data_path= "path/to/your/calib/data/folder"
quant_config = get_default_config("XINT8")
config = Config(global_quant_config=quant_config)
quantizer = ModelQuantizer(config)
quantizer.quantize_model(input_model_path, output_model_path, calibration_data_reader=None, calibration_data_path=calib_data_path)
Using Random Data for AMD Quark Quantizer#
Random Data Calibration uses random numbers when no calibration data is available. To enable this feature, set the UseRandomData parameter to True. This option is useful for testing but might yield worse quantization results than using a real calibration dataset. It is recommended to use a real calibration dataset when performing static quantization.
Example Code:#
import onnxruntime
from quark.onnx import ModelQuantizer
from quark.onnx.quantization.config.config import Config, get_default_config
input_model_path = "path/to/your/resnet50.onnx"
output_model_path = "path/to/your/resnet50_quantized.onnx"
quant_config = get_default_config("XINT8")
quant_config.extra_options['UseRandomData'] = True
config = Config(global_quant_config=quant_config)
quantizer = ModelQuantizer(config)
quantizer.quantize_model(input_model_path, output_model_path, calibration_data_reader=None)