Microscaling (MX) Example#

Note

For information on accessing Quark ONNX examples, refer to Accessing ONNX Examples. This example and the relevant files are available at /onnx/accuracy_improvement/MX.

This example describes how to quantize a ResNet50 model using the ONNX quantizer of Quark with Microscaling (MX) formats.

Similar to Block Floating Point (BFP), the elements in the MX block also share a common exponent, but they have independent data types, such as FP8 (E5M2 and E4M3), FP6 (E3M2 and E2M3), FP4 (E2M1), and INT8, which provide fine-grained scaling within the block to improve precision.

Pip requirements#

Install the necessary Python packages:

python -m pip install -r ../utils/requirements.txt

Prepare model#

Download the ONNX float model from the onnx/models repo directly:

wget -P models https://github.com/onnx/models/raw/new-models/vision/classification/resnet/model/resnet50-v1-12.onnx

Prepare data#

ILSVRC 2012, commonly known as ‘ImageNet’. This dataset provides access to ImageNet (ILSVRC) 2012, which is the most commonly used subset of ImageNet. This dataset spans 1000 object classes and contains 50,000 validation images.

If you already have an ImageNet dataset, you can directly use your dataset path.

To prepare the test data, please check the download section of the main website: `https://huggingface.co/datasets/imagenet-1k/tree/main/data`__. You need to register and download val_images.tar.gz.

Then, create the validation dataset and calibration dataset:

mkdir val_data && tar -xzf val_images.tar.gz -C val_data
python ../utils/prepare_data.py val_data calib_data

The storage format of the val_data of the ImageNet dataset is organized as follows:

  • val_data

    • n01440764

      • ILSVRC2012_val_00000293.JPEG

      • ILSVRC2012_val_00002138.JPEG

    • n01443537

      • ILSVRC2012_val_00000236.JPEG

      • ILSVRC2012_val_00000262.JPEG

    • n15075141

      • ILSVRC2012_val_00001079.JPEG

      • ILSVRC2012_val_00002663.JPEG

The storage format of the calib_data of the ImageNet dataset is organized as follows:

  • calib_data

    • n01440764

      • ILSVRC2012_val_00000293.JPEG

    • n01443537

      • ILSVRC2012_val_00000236.JPEG

    • n15075141

      • ILSVRC2012_val_00001079.JPEG

Quantization with MX Formats#

The quantizer takes the float model and produces an MX quantized model. There are built-in configurations in the quantization script for MX formats, which are named as ‘MXFP8E5M2’, ‘MXFP8E4M3’, ‘MXFP6E3M2’, ‘MXFP6E2M3’, ‘MXFP4E2M1’, ‘MXINT8’. We can choose different MX formats by passing one of the configuration names to the script. Here is an example of MXINT8 quantization:

python quantize_model.py --input_model_path models/resnet50-v1-12.onnx \
                         --output_model_path models/resnet50-v1-12_quantized.onnx \
                         --calibration_dataset_path calib_data \
                         --config MXINT8

This command will generate an MX quantized model under the models folder.

Evaluation#

Test the accuracy of the float model on the ImageNet validation dataset:

python onnx_validate.py val_data --batch-size 1 --onnx-input models/resnet50-v1-12.onnx

Test the accuracy of the MX quantized model on the ImageNet validation dataset:

python onnx_validate.py val_data --batch-size 1 --onnx-input models/resnet50-v1-12_quantized.onnx

If you want to run faster with GPU support, you can also execute the following command:

python onnx_validate.py val_data --batch-size 1 --onnx-input models/resnet50-v1-12_quantized.onnx --gpu

Float Model

Quantized Model with MXINT8

Quantized Model with MXFP8E5M2

Quantized Model with MXFP8E4M3

Quantized Model with MXFP6E3M2

Quantized Model with MXFP6E2M3

Quantized Model with MXFP4E2M1

Model Size

97.82 MB

97.47 MB

97.47 MB

97.47 MB

97.47 MB

97.47 MB

97.47 MB

Prec@1

74.114 %

74.124 %

63.388 %

69.634 %

63.318 %

71.612 %

4.592 %

Prec@5

91.716 %

91.718 %

86.640 %

89.630 %

86.654 %

90.680 %

13.450 %

Note

Different execution devices can lead to minor variations in the accuracy of the quantized model.