Quark ONNX Quantization Example#
This folder contains an example of quantizing a mobilenetv2_050.lamb_in1k model using the ONNX quantizer of Quark. Per-tensor quantization performs poorly on the model, but ADAQUANT can significantly mitigate the quantization loss. The example has the following parts:
Pip requirements#
Install the necessary python packages:
python -m pip install -r ../utils/requirements.txt
Prepare model#
Export onnx model from mobilenetv2_050.lamb_in1k torch model. The corresponding model link is https://huggingface.co/timm/mobilenetv2_050.lamb_in1k:
mkdir models && python ../utils/export_onnx.py mobilenetv2_050.lamb_in1k
Prepare data#
ILSVRC 2012, commonly known as ‘ImageNet’. This dataset provides access to ImageNet (ILSVRC) 2012 which is the most commonly used subset of ImageNet. This dataset spans 1000 object classes and contains 50,000 validation images.
If you already have an ImageNet datasets, you can directly use your dataset path.
To prepare the test data, please check the download section of the main website: https://huggingface.co/datasets/imagenet-1k/tree/main/data. You need to register and download val_images.tar.gz.
Then, create the validation dataset and calibration dataset:
mkdir val_data && tar -xzf val_images.tar.gz -C val_data
python ../utils/prepare_data.py val_data calib_data
The storage format of the val_data of the ImageNet dataset organized as follows:
val_data
n01440764
ILSVRC2012_val_00000293.JPEG
ILSVRC2012_val_00002138.JPEG
…
n01443537
ILSVRC2012_val_00000236.JPEG
ILSVRC2012_val_00000262.JPEG
…
…
n15075141
ILSVRC2012_val_00001079.JPEG
ILSVRC2012_val_00002663.JPEG
…
The storage format of the calib_data of the ImageNet dataset organized as follows:
calib_data
n01440764
ILSVRC2012_val_00000293.JPEG
n01443537
ILSVRC2012_val_00000236.JPEG
…
n15075141
ILSVRC2012_val_00001079.JPEG
Quantization without ADAQUANT#
The quantizer takes the float model and produce a quantized model without ADAQUANT.
python quantize_model.py --model_name mobilenetv2_050.lamb_in1k \
--input_model_path models/mobilenetv2_050.lamb_in1k.onnx \
--output_model_path models/mobilenetv2_050.lamb_in1k_quantized.onnx \
--calibration_dataset_path calib_data \
--config S8S8_AAWS
This command will generate a quantized model under the models folder, which was quantized by S8S8_AAWS configuration (Int8 symmetric quantization) without ADAQUANT.
Quantization with ADAQUANT#
The quantizer takes the float model and produce a quantized model with ADAQUANT.
python quantize_model.py --model_name mobilenetv2_050.lamb_in1k \
--input_model_path models/mobilenetv2_050.lamb_in1k.onnx \
--output_model_path models/mobilenetv2_050.lamb_in1k_adaquant_quantized.onnx \
--calibration_dataset_path calib_data \
--config S8S8_AAWS_ADAQUANT
This command will generate a quantized model under the models folder, which was quantized by S8S8_AAWS configuration (Int8 symmetric quantization) with ADAQUANT.
Evaluation#
Test the accuracy of the float model on ImageNet val dataset:
python ../utils/onnx_validate.py val_data --model-name mobilenetv2_050.lamb_in1k --batch-size 1 --onnx-input models/mobilenetv2_050.lamb_in1k.onnx
Test the accuracy of the quantized model without ADAQUANT on ImageNet val dataset:
python ../utils/onnx_validate.py val_data --model-name mobilenetv2_050.lamb_in1k --batch-size 1 --onnx-input models/mobilenetv2_050.lamb_in1k_quantized.onnx
Test the accuracy of the quantized model with ADAQUANT on ImageNet val dataset:
python ../utils/onnx_validate.py val_data --model-name mobilenetv2_050.lamb_in1k --batch-size 1 --onnx-input models/mobilenetv2_050.lamb_in1k_adaquant_quantized.onnx
Float Model |
Quantized Model without ADAQUANT |
Quantized Model with ADAQUANT |
|
---|---|---|---|
Model Size |
8.4 MB |
2.3 MB |
2.4 MB |
P rec@1 |
65.424 % |
1.708 % |
52.322 % |
P rec@5 |
85.788 % |
5.690 % |
75.756 % |
Note: Different machine models can lead to minor variations in the accuracy of quantized model with adaquant.