Quantizing an OPT-125M Model#
Note
For information on accessing Quark ONNX examples, refer to Accessing ONNX Examples.
This example and the relevant files are available at onnx/weights_only_quantization/int8_qdq/llama2
This example describes how to quantize an opt-125m model using the ONNX quantizer of Quark.
Pip requirements#
Install the necessary Python packages:
python -m pip install -r requirements.txt
Prepare model#
Get opt-125m torch model:
mkdir opt-125m
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/pytorch_model.bin
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/config.json
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/tokenizer_config.json
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/vocab.json
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/merges.txt
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/generation_config.json
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/special_tokens_map.json
Export ONNX model from opt-125m torch model:
mkdir models && optimum-cli export onnx --model ./opt-125m --task text-generation ./models/
Quantization#
The quantizer takes the float model and produces a quantized model.
cp -r models quantized_models && rm quantized_models/model.onnx
python quantize_model.py --input_model_path models/model.onnx \
--output_model_path quantized_models/quantized_model.onnx \
--config INT8_TRANSFORMER_DEFAULT
This command will generate a quantized model under the quantized_models folder, which was quantized by Int8 configuration for transformer-based models.
Evaluation#
Test the PPL of the float model on wikitext2.raw:
python onnx_validate.py --model_name_or_path models/ --per_gpu_eval_batch_size 1 --block_size 2048 --onnx_model models/ --do_onnx_eval --no_cuda
Test the PPL of the quantized model:
python onnx_validate.py --model_name_or_path quantized_models/ --per_gpu_eval_batch_size 1 --block_size 2048 --onnx_model quantized_models/ --do_onnx_eval --no_cuda
Float Model |
Quantized Model |
|
---|---|---|
Model Size |
480 MB |
384 MB |
PPL |
27.0317 |
28.6846 |
License#
Copyright (C) 2024, Advanced Micro Devices, Inc. All rights reserved. SPDX-License-Identifier: MIT