quark.onnx.qdq_quantizer#

Module Contents#

Classes#

class quark.onnx.qdq_quantizer.QDQQuantizer(model: onnx.ModelProto, per_channel: bool, reduce_range: bool, mode: onnxruntime.quantization.quant_utils.QuantizationMode.QLinearOps, static: bool, weight_qType: Any, activation_qType: Any, tensors_range: Any, nodes_to_quantize: List[str], nodes_to_exclude: List[str], op_types_to_quantize: List[str], extra_options: Any = None)#

A class to perform quantization on an ONNX model using Quantize-Dequantize (QDQ) nodes.

Args:

model (ModelProto): The ONNX model to be quantized. per_channel (bool): Whether to perform per-channel quantization. reduce_range (bool): Whether to reduce the quantization range. mode (QuantizationMode.QLinearOps): The quantization mode to be used. static (bool): Whether to use static quantization. weight_qType (Any): The quantization type for weights. activation_qType (Any): The quantization type for activations. tensors_range (Any): Dictionary specifying the min and max values for tensors. nodes_to_quantize (List[str]): List of node names to be quantized. nodes_to_exclude (List[str]): List of node names to be excluded from quantization. op_types_to_quantize (List[str]): List of operation types to be quantized. extra_options (Any, optional): Additional options for quantization.

Inherits from:

OrtQDQQuantizer: Base class for ONNX QDQ quantization.

class quark.onnx.qdq_quantizer.QDQNPUTransformerQuantizer(model: onnx.ModelProto, per_channel: bool, reduce_range: bool, mode: onnxruntime.quantization.quant_utils.QuantizationMode.QLinearOps, static: bool, weight_qType: Any, activation_qType: Any, tensors_range: Any, nodes_to_quantize: List[str], nodes_to_exclude: List[str], op_types_to_quantize: List[str], extra_options: Dict[str, Any] | None = None)#

A class to perform quantization on an ONNX model using Quantize-Dequantize (QDQ) nodes optimized for NPU (Neural Processing Unit) Transformers.

Args:

model (ModelProto): The ONNX model to be quantized. per_channel (bool): Whether to perform per-channel quantization. reduce_range (bool): Whether to reduce the quantization range. mode (QuantizationMode.QLinearOps): The quantization mode to be used. static (bool): Whether to use static quantization. weight_qType (Any): The quantization type for weights. activation_qType (Any): The quantization type for activations. tensors_range (Any): Dictionary specifying the min and max values for tensors. nodes_to_quantize (List[str]): List of node names to be quantized. nodes_to_exclude (List[str]): List of node names to be excluded from quantization. op_types_to_quantize (List[str]): List of operation types to be quantized. extra_options (Optional[Dict[str, Any]], optional): Additional options for quantization.

Inherits from:

QDQQuantizer: Base class for ONNX QDQ quantization.

class quark.onnx.qdq_quantizer.VitisQDQQuantizer(model: onnx.ModelProto, per_channel: bool, reduce_range: bool, mode: onnxruntime.quantization.quant_utils.QuantizationMode.QLinearOps, static: bool, weight_qType: Any, activation_qType: Any, tensors_range: Any, nodes_to_quantize: List[str], nodes_to_exclude: List[str], op_types_to_quantize: List[str], calibrate_method: Any, quantized_tensor_type: Dict[Any, Any] = {}, extra_options: Any = None)#

A class to perform Vitis-specific Quantize-Dequantize (QDQ) quantization on an ONNX model.

Args:

model (ModelProto): The ONNX model to be quantized. per_channel (bool): Whether to perform per-channel quantization. reduce_range (bool): Whether to reduce the quantization range. mode (QuantizationMode.QLinearOps): The quantization mode to be used. static (bool): Whether to use static quantization. weight_qType (Any): The quantization type for weights. activation_qType (Any): The quantization type for activations. tensors_range (Any): Dictionary specifying the min and max values for tensors. nodes_to_quantize (List[str]): List of node names to be quantized. nodes_to_exclude (List[str]): List of node names to be excluded from quantization. op_types_to_quantize (List[str]): List of operation types to be quantized. calibrate_method (Any): The method used for calibration. quantized_tensor_type (Dict[Any, Any], optional): Dictionary specifying quantized tensor types. extra_options (Any, optional): Additional options for quantization.

Inherits from:

VitisONNXQuantizer: Base class for Vitis-specific ONNX quantization.

Attributes:

tensors_to_quantize (Dict[Any, Any]): Dictionary of tensors to be quantized. bias_to_quantize (List[Any]): List of bias tensors to be quantized. nodes_to_remove (List[Any]): List of nodes to be removed during quantization. op_types_to_exclude_output_quantization (List[str]): List of op types to exclude from output quantization. quantize_bias (bool): Whether to quantize bias tensors. add_qdq_pair_to_weight (bool): Whether to add QDQ pairs to weights. dedicated_qdq_pair (bool): Whether to create dedicated QDQ pairs for each node. tensor_to_its_receiving_nodes (Dict[Any, Any]): Dictionary mapping tensors to their receiving nodes. qdq_op_type_per_channel_support_to_axis (Dict[str, int]): Dictionary mapping op types to channel axis for per-channel quantization. int32_bias (bool): Whether to quantize bias using int32. weights_only (bool): Whether to perform weights-only quantization.

class quark.onnx.qdq_quantizer.VitisQDQNPUCNNQuantizer(model: onnx.ModelProto, per_channel: bool, reduce_range: bool, mode: onnxruntime.quantization.quant_utils.QuantizationMode.QLinearOps, static: bool, weight_qType: Any, activation_qType: Any, tensors_range: Any, nodes_to_quantize: List[str], nodes_to_exclude: List[str], op_types_to_quantize: List[str], calibrate_method: Any, quantized_tensor_type: Dict[Any, Any] = {}, extra_options: Dict[str, Any] | None = None)#

A class to perform Vitis-specific Quantize-Dequantize (QDQ) quantization for NPU (Neural Processing Unit) on CNN models.

Args:

model (ModelProto): The ONNX model to be quantized. per_channel (bool): Whether to perform per-channel quantization (must be False for NPU). reduce_range (bool): Whether to reduce the quantization range (must be False for NPU). mode (QuantizationMode.QLinearOps): The quantization mode to be used. static (bool): Whether to use static quantization. weight_qType (Any): The quantization type for weights (must be QuantType.QInt8 for NPU). activation_qType (Any): The quantization type for activations. tensors_range (Any): Dictionary specifying the min and max values for tensors. nodes_to_quantize (List[str]): List of node names to be quantized. nodes_to_exclude (List[str]): List of node names to be excluded from quantization. op_types_to_quantize (List[str]): List of operation types to be quantized. calibrate_method (Any): The method used for calibration. quantized_tensor_type (Dict[Any, Any], optional): Dictionary specifying quantized tensor types. extra_options (Optional[Dict[str, Any]], optional): Additional options for quantization.

Inherits from:

VitisQDQQuantizer: Base class for Vitis-specific QDQ quantization.

Attributes:

tensors_to_quantize (Dict[Any, Any]): Dictionary of tensors to be quantized. is_weight_symmetric (bool): Whether to enforce symmetric quantization for weights. is_activation_symmetric (bool): Whether to enforce symmetric quantization for activations.

class quark.onnx.qdq_quantizer.VitisExtendedQuantizer(model: onnx.ModelProto, per_channel: bool, reduce_range: bool, mode: onnxruntime.quantization.quant_utils.QuantizationMode.QLinearOps, quant_format: Any, static: bool, weight_qType: Any, activation_qType: Any, tensors_range: Any, nodes_to_quantize: List[str], nodes_to_exclude: List[str], op_types_to_quantize: List[str], calibrate_method: Any, quantized_tensor_type: Dict[Any, Any], extra_options: Dict[str, Any] | None = None)#

A class to perform extended Vitis-specific Quantize-Dequantize (QDQ) quantization.

Args:

model (ModelProto): The ONNX model to be quantized. per_channel (bool): Whether to perform per-channel quantization. reduce_range (bool): Whether to reduce the quantization range. mode (QuantizationMode.QLinearOps): The quantization mode to be used. quant_format (Any): The format for quantization. static (bool): Whether to use static quantization. weight_qType (Any): The quantization type for weights. activation_qType (Any): The quantization type for activations. tensors_range (Any): Dictionary specifying the min and max values for tensors. nodes_to_quantize (List[str]): List of node names to be quantized. nodes_to_exclude (List[str]): List of node names to be excluded from quantization. op_types_to_quantize (List[str]): List of operation types to be quantized. calibrate_method (Any): The method used for calibration. quantized_tensor_type (Dict[Any, Any]): Dictionary specifying quantized tensor types. extra_options (Optional[Dict[str, Any]], optional): Additional options for quantization.

Inherits from:

VitisQDQQuantizer: Base class for Vitis-specific QDQ quantization.

Attributes:

tensors_to_quantize (Dict[Any, Any]): Dictionary of tensors to be quantized. quant_format (Any): The format for quantization. add_qdq_pair_to_weight (bool): Whether to add QDQ pair to weight (and bias). fold_relu (bool): Whether to fold ReLU layers.

class quark.onnx.qdq_quantizer.VitisBFPQuantizer(model: onnx.ModelProto, per_channel: bool, reduce_range: bool, mode: onnxruntime.quantization.quant_utils.QuantizationMode.QLinearOps, quant_format: Any, static: bool, weight_qType: Any, activation_qType: Any, tensors_range: Any, nodes_to_quantize: List[str], nodes_to_exclude: List[str], op_types_to_quantize: List[str], calibrate_method: Any, quantized_tensor_type: Dict[Any, Any] = {}, extra_options: Dict[str, Any] | None = None)#

A class to perform Vitis-specific Block Floating Point (BFP) Quantization-Dequantization (QDQ) quantization.

Args:

model (ModelProto): The ONNX model to be quantized. per_channel (bool): Whether to perform per-channel quantization. reduce_range (bool): Whether to reduce the quantization range. mode (QuantizationMode.QLinearOps): The quantization mode to be used. quant_format (Any): The format for quantization. static (bool): Whether to use static quantization. weight_qType (Any): The quantization type for weights. activation_qType (Any): The quantization type for activations. tensors_range (Any): Dictionary specifying the min and max values for tensors. nodes_to_quantize (List[str]): List of node names to be quantized. nodes_to_exclude (List[str]): List of node names to be excluded from quantization. op_types_to_quantize (List[str]): List of operation types to be quantized. calibrate_method (Any): The method used for calibration. quantized_tensor_type (Dict[Any, Any], optional): Dictionary specifying quantized tensor types. extra_options (Optional[Dict[str, Any]], optional): Additional options for quantization.

Inherits from:

VitisQDQQuantizer: Base class for Vitis-specific QDQ quantization.

Attributes:

int32_bias (bool): Whether to quantize bias as int32. is_activation_symmetric (bool): Whether to use symmetric quantization for activations. quant_format (Any): The format for quantization. fn_type: (string): The op type of the fix neuron. fn_attrs (Dict[str, Any]): Attributes for BFP/MX fix neuron.