quark.onnx.calibrate
#
Module Contents#
Classes#
Functions#
- class quark.onnx.calibrate.MinMaxCalibrater(model_path: pathlib.Path, op_types_to_calibrate: List[str] | None, augmented_model_path: str = 'augmented_model.onnx', symmetric: bool = False, use_external_data_format: bool = False, moving_average: bool = False, averaging_constant: float = 0.01)#
This method obtains the quantization parameters based on the minimum and maximum values of each tensor.
- Parameters:
model_path – Path to the ONNX model to calibrate.
op_types_to_calibrate – List of operator types to calibrate. By default, calibrates all the float32/float16 tensors.
augmented_model_path – Path to save the augmented model. Default is “augmented_model.onnx”.
symmetric – Whether to make the range of tensor symmetric (central point is 0). Default is False.
use_external_data_format – Whether to use external data format to store model which size is >= 2GB. Default is False.
moving_average – Whether to compute the moving average of the minimum and maximum values instead of the global minimum and maximum. Default is False.
averaging_constant – Constant smoothing factor to use when computing the moving average. Default is 0.01. Should be between 0 and 1.
- Raises:
ValueError – If averaging_constant is not between 0 and 1 when moving_average is True.
- class quark.onnx.calibrate.EntropyCalibrater(model_path: pathlib.Path, op_types_to_calibrate: List[str] | None, augmented_model_path: str = 'augmented_model.onnx', use_external_data_format: bool = False, method: str = 'entropy', symmetric: bool = False, num_bins: int = 128, num_quantized_bins: int = 128)#
This method determines the quantization parameters by considering the entropy algorithm of each tensor’s distribution.
- Parameters:
model_path – Path to the ONNX model to calibrate.
op_types_to_calibrate – List of operator types to calibrate. By default, calibrates all the float32/float16 tensors.
augmented_model_path – Path to save the augmented model. Default is “augmented_model.onnx”.
use_external_data_format – Whether to use external data format to store model which size is >= 2GB. Default is False.
method – Method for calibration. One of [‘entropy’, ‘percentile’, ‘distribution’]. Default is “entropy”.
symmetric – Whether to make the range of tensor symmetric (central point is 0). Default is False.
num_bins – Number of bins to create a new histogram for collecting tensor values. Default is 128.
num_quantized_bins – Number of quantized bins. Default is 128.
- class quark.onnx.calibrate.PercentileCalibrater(model_path: pathlib.Path, op_types_to_calibrate: List[str] | None, augmented_model_path: str = 'augmented_model.onnx', use_external_data_format: bool = False, method: str = 'percentile', symmetric: bool = False, num_bins: int = 2048, percentile: float = 99.999)#
This method calculates quantization parameters using percentiles of the tensor values.
- Parameters:
model_path – Path to the ONNX model to calibrate.
op_types_to_calibrate – List of operator types to calibrate. By default, calibrates all the float32/float16 tensors.
augmented_model_path – Path to save the augmented model. Default is “augmented_model.onnx”.
use_external_data_format – Whether to use external data format to store model which size is >= 2GB. Default is False.
method – Method for calibration. One of [‘entropy’, ‘percentile’, ‘distribution’]. Default is “percentile”.
symmetric – Whether to make the range of tensor symmetric (central point is 0). Default is False.
num_bins – Number of bins to create a new histogram for collecting tensor values. Default is 2048.
percentile – Percentile value for calibration, a float between [0, 100]. Default is 99.999.
- class quark.onnx.calibrate.PowOfTwoCalibrater(model: pathlib.Path, op_types_to_calibrate: Sequence[str] | None, augmented_model_path: str = 'augmented_model.onnx', use_external_data_format: bool = False, activation_type: onnxruntime.quantization.quant_utils.QuantType | quark.onnx.quant_utils.VitisQuantType = QuantType.QInt8, method: quark.onnx.quant_utils.PowerOfTwoMethod = PowerOfTwoMethod.MinMSE, symmetric: bool = True, minmse_mode: str = 'All', percentile: float = 99.999, quantized_tensor_type: Dict[Any, Any] = {})#
This method get the power-of-two quantize parameters for each tensor to minimize the mean-square-loss of quantized values and float values. This takes longer time but usually gets better accuracy.
- Parameters:
model – Path to the ONNX model to calibrate.
op_types_to_calibrate – List of operator types to calibrate. By default, calibrates all the float32/float16 tensors.
augmented_model_path – Path to save the augmented model. Default is “augmented_model.onnx”.
use_external_data_format – Whether to use external data format to store model which size is >= 2GB. Default is False.
activation_type – Type of quantization for activations. Default is QuantType.QInt8.
method – Calibration method. Default is PowerOfTwoMethod.MinMSE.
symmetric – Whether to make the range of tensor symmetric (central point is 0). Default is True.
minmse_mode – Mode for the MinMSE method. Default is “All”.
percentile – Percentile value for calibration, a float between 0 and 100. Default is 99.999.
quantized_tensor_type – Dictionary specifying the quantized tensor type. Default is an empty dictionary.
- augment_graph() None #
make all quantization_candidates op type nodes as part of the graph output. :return: augmented ONNX model
- compute_range() Any #
Compute the min-max range of tensor :return: dictionary mapping: {tensor name: (min value, max value)}
- class quark.onnx.calibrate.PowOfTwoCollector(activation_type: onnxruntime.quantization.quant_utils.QuantType | quark.onnx.quant_utils.VitisQuantType = QuantType.QInt8, method: quark.onnx.quant_utils.PowerOfTwoMethod = PowerOfTwoMethod.MinMSE, symmetric: bool = True, minmse_mode: str = 'All', percentile: float = 99.999, quantized_tensor_type: Dict[Any, Any] = {})#
Collecting PowOfTwoCollector quantize for each tensor. Support MinMSE method.
- Parameters:
activation_type – Type of quantization for activations. Default is QuantType.QInt8.
method – Calibration method. Default is PowerOfTwoMethod.MinMSE.
symmetric – Whether to make the range of tensor symmetric (central point is 0). Default is True.
minmse_mode – Mode for the MinMSE method. Default is “All”.
percentile – Percentile value for calibration, a float between 0 and 100. Default is 99.999.
quantized_tensor_type – Dictionary specifying the quantized tensor type. Default is an empty dictionary.
- quark.onnx.calibrate.create_calibrator_power_of_two(model: pathlib.Path, op_types_to_calibrate: List[str], augmented_model_path: str = 'augmented_model.onnx', activation_type: quark.onnx.quant_utils.VitisQuantType | onnxruntime.quantization.quant_utils.QuantType = QuantType.QInt8, method: quark.onnx.quant_utils.PowerOfTwoMethod = PowerOfTwoMethod.NonOverflow, use_external_data_format: bool = False, execution_providers: List[str] | None = ['CPUExecutionProvider'], quantized_tensor_type: Dict[Any, Any] = {}, extra_options: Dict[str, Any] = {}) Any #
Create a calibrator for power-of-two quantization.
- Parameters:
model – Path to the ONNX model to calibrate.
op_types_to_calibrate – List of operator types to calibrate.
augmented_model_path – Path to save the augmented ONNX model.
activation_type – Type of quantization for activations.
method – Calibration method to use.
use_external_data_format – Whether to use external data format for large models.
execution_providers – List of execution providers for ONNX Runtime.
quantized_tensor_type – Dictionary specifying the quantized tensor type.
extra_options – Additional options for calibrator configuration.
- Returns:
Initialized calibrator object.
- quark.onnx.calibrate.create_calibrator_float_scale(model: pathlib.Path, op_types_to_calibrate: List[str] | None, augmented_model_path: str = 'augmented_model.onnx', calibrate_method: onnxruntime.quantization.calibrate.CalibrationMethod = CalibrationMethod.MinMax, use_external_data_format: bool = False, execution_providers: List[str] | None = ['CPUExecutionProvider'], extra_options: Dict[str, Any] = {}) Any #
Create a calibrator for floating-point scale quantization.
- Parameters:
model – Path to the ONNX model to calibrate.
op_types_to_calibrate – List of operator types to calibrate. If None, all float32/float16 tensors are calibrated.
augmented_model_path – Path to save the augmented ONNX model.
calibrate_method – Calibration method to use (MinMax, Entropy, Percentile, or Distribution).
use_external_data_format – Whether to use external data format for large models.
execution_providers – List of execution providers for ONNX Runtime.
extra_options – Additional options for calibrator configuration.
- Returns:
Initialized calibrator object.