Dynamic Quantization for OPT-125M#
This folder contains an example of quantizing an opt-125m model using the ONNX quantizer of Quark. The example has the following parts:
Pip requirements#
Install the necessary python packages:
python -m pip install -r requirements.txt
Prepare model#
Get opt-125m torch model:
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/pytorch_model.bin
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/config.json
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/tokenizer_config.json
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/vocab.json
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/merges.txt
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/generation_config.json
wget -P opt-125m https://huggingface.co/facebook/opt-125m/resolve/main/special_tokens_map.json
Export onnx model from opt-125m torch model:
mkdir models && optimum-cli export onnx --model ./opt-125m --task text-generation ./models/
Quantization#
The quantizer takes the float model and produces a dynamically quantized model:
cp -r models dynamic_quantized_models && rm dynamic_quantized_models/model.onnx
python quantize_model.py --input_model_path models/model.onnx \
--output_model_path dynamic_quantized_models/dynamic_quantized_model.onnx \
--config UINT8_DYNAMIC_QUANT
This command will generate a quantized model under the dynamic_quantized_models folder, using the UInt8 dynamic quantization configuration.
Evaluation#
Test the PPL of the float model on wikitext2.raw:
python onnx_validate.py --model_name_or_path models/ --per_gpu_eval_batch_size 1 --block_size 2048 --do_onnx_eval --no_cuda
Test the PPL of the dynamic quantized model:
python onnx_validate.py --model_name_or_path dynamic_quantized_models/ --per_gpu_eval_batch_size 1 --block_size 2048 --do_onnx_eval --no_cuda
Float Model |
Dynamic Quantized Model |
|
---|---|---|
Model Size |
480 MB |
120 MB |
PPL |
27.0317 |
28.6006 |