Quark ONNX Example for CrossLayerEqualization (CLE)#
This folder contains an example of quantizing a resnet152 model using the ONNX quantizer of Quark. The example has the following parts:
Pip Requirements#
Install the necessary Python packages:
python -m pip install -r ../utils/requirements.txt
Prepare Model#
Export ONNX model from resnet152 torch model. The corresponding model link is https://huggingface.co/timm/resnet152.a1h_in1k:
mkdir models && python ../utils/export_onnx.py resnet152
Prepare Data#
ILSVRC 2012, commonly known as ‘ImageNet’. This dataset provides access to ImageNet (ILSVRC) 2012, which is the most commonly used subset of ImageNet. This dataset spans 1000 object classes and contains 50,000 validation images.
If you already have an ImageNet dataset, you can directly use your dataset path.
To prepare the test data, please check the download section of the main website: https://huggingface.co/datasets/imagenet-1k/tree/main/data. You need to register and download val_images.tar.gz.
Then, create the validation dataset and calibration dataset:
mkdir val_data && tar -xzf val_images.tar.gz -C val_data
python ../utils/prepare_data.py val_data calib_data
The storage format of the val_data of the ImageNet dataset is organized as follows:
val_data
n01440764
ILSVRC2012_val_00000293.JPEG
ILSVRC2012_val_00002138.JPEG
…
n01443537
ILSVRC2012_val_00000236.JPEG
ILSVRC2012_val_00000262.JPEG
…
…
n15075141
ILSVRC2012_val_00001079.JPEG
ILSVRC2012_val_00002663.JPEG
…
The storage format of the calib_data of the ImageNet dataset is organized as follows:
calib_data
n01440764
ILSVRC2012_val_00000293.JPEG
n01443537
ILSVRC2012_val_00000236.JPEG
…
n15075141
ILSVRC2012_val_00001079.JPEG
Quantization Without CLE#
The quantizer takes the float model and produces a quantized model without CLE.
python quantize_model.py --model_name resnet152 \
--input_model_path models/resnet152.onnx \
--output_model_path models/resnet152_quantized.onnx \
--calibration_dataset_path calib_data
This command will generate a quantized model under the models folder, which was quantized by the S8S8_AAWS configuration (Int8 symmetric quantization) without CLE.
Quantization With CLE#
The quantizer takes the float model and produces a quantized model with CLE.
python quantize_model.py --model_name resnet152 \
--input_model_path models/resnet152.onnx \
--output_model_path models/resnet152_cle_quantized.onnx \
--include_cle \
--calibration_dataset_path calib_data
This command will generate a quantized model under the models folder, which was quantized by the S8S8_AAWS configuration (Int8 symmetric quantization) with CLE.
Evaluation#
Test the accuracy of the float model on the ImageNet val dataset:
python ../utils/onnx_validate.py val_data --model-name resnet152 --batch-size 1 --onnx-input models/resnet152.onnx
Test the accuracy of the quantized model without CLE on the ImageNet val dataset:
python ../utils/onnx_validate.py val_data --model-name resnet152 --batch-size 1 --onnx-input models/resnet152_quantized.onnx
Test the accuracy of the quantized model with CLE on the ImageNet val dataset:
python ../utils/onnx_validate.py val_data --model-name resnet152 --batch-size 1 --onnx-input models/resnet152_cle_quantized.onnx
Float Model |
Quantized Model without CLE |
Quantized Model with CLE |
|
---|---|---|---|
Model Size |
232 MB |
59 MB |
59 MB |
Prec@1 |
83.456 % |
70.042 % |
79.664 % |
Prec@5 |
96.580 % |
88.502 % |
94.854 % |