quark.onnx.finetuning.onnx_evaluate
#
Module Contents#
Functions#
- quark.onnx.finetuning.onnx_evaluate.create_session(onnx_model: Union[onnx.ModelProto, str]) onnxruntime.InferenceSession #
Create a inference session for the onnx model and register libraries for it. :param onnx_model: the proto or the path of the onnx model :return: the created inference session
- quark.onnx.finetuning.onnx_evaluate.inference_model(onnx_model: Union[onnx.ModelProto, str], data_reader: quark.onnx.quant_utils.CachedDataReader, data_num: Union[int, None] = None, output_index: Union[int, None] = None) List[List[numpy.ndarray[Any, Any]]] #
Run the onnx model and feeding it with the data from the cached data reader. :param onnx_model: the proto or the path of the onnx model :param data_reader: the cached data reader :param data_num: how many samples will be used in the data reader :param output_index: which output will be chosen to calculate L2 :return: the results after inference
- quark.onnx.finetuning.onnx_evaluate.average_L2(float_results: List[List[numpy.ndarray[Any, Any]]], quant_results: List[List[numpy.ndarray[Any, Any]]]) Any #
Calculate the average L2 distance between the float model and the quantized model. :param float_results: the result of the float model :param quant_results: the result of the quant model :return: the average L2 distance