Quark ONNX Adapter#
AMD Quark includes a power graph transformation tool called Quark ONNX Adapter. It can perform graph transformation of preprocessing like constant folding, operator fusion, removal of redundant nodes, streamlining input and output nodes, and optimizing the graph structure.
Note
In this release, Quark ONNX Adapter only supports graph transformation of preprocessing, and in the next release, it will also support graph transformation of postprocessing on quantized models. Specific optimizations for quantized models include platform-specific optimizations, such as those for deployment on NPU platforms, to enhance the implementation on specific hardware platforms.
Passes of Quark ONNX Adapter#
Passes are the blocks of Quark ONNX Adapter. As shown below, it supports 20 preprocessing passes. For example onnx_convert_bn_to_conv is a pass name, and convert_bn_to_conv is its corresponding parameter.
onnx_convert_bn_to_conv:
convert_bn_to_conv: (bool). Whether to convert BatchNormalization operations to Conv operations.
onnx_convert_clip_to_relu:
convert_clip_to_relu: (bool). Whether to convert Clip operations to Relu operations.
onnx_convert_fp16_to_fp32:
convert_fp16_to_fp32: (bool). Whether to convert the input model from FP16 to FP32.
onnx_convert_nchw_to_nhwc:
convert_nchw_to_nhwc: (bool or list[str]). Whether to convert the input model from NCHW to NHWC. If setting True, conversion applies to all nodes; if providing a list of input or output names, such as [“input_1”, “output_2”,], shape conversion applies only to the listed inputs or outputs.
onnx_convert_opset_version:
target_opset_version: (int). Convert opset version of the input model to the target like 21.
onnx_convert_reduce_mean_to_global_avg_pool:
convert_reduce_mean_to_global_avg_pool: (bool). Whether to convert ReduceMean operations to GlobalAveragePool operations.
onnx_convert_split_to_slice:
convert_split_to_slice: (bool). Whether to convert Split operations to Slice operations.
onnx_copy_bias_init:
shared_bias_op_types: (list[str]). Specifies the node op_types to run duplicating bias initializers in the model for separate quantization use across different nodes. For example: [“Conv”, “ConvTranspose”, “Gemm”].
onnx_copy_shared_init:
shared_init_op_types: (list[str]). Specifies the node op_types to run duplicating initializers in the model for separate quantization use across different nodes. For example: [“Conv”, “ConvTranspose”, “Gemm”].
onnx_fix_shapes:
input_output_name_shapes: (dict[str, list[int]]). Model input/output name & input/output shapes to replace shape of. For example: {‘input_1’: [1, 224, 224, 3], ‘input_2’: [1, 96, 96, 3], ‘output_1’ :[1, 1000], ‘output_2’:[1, 10]}.
onnx_fold_batch_norm_after_concat:
fold_batch_norm_after_concat: (bool). Whether to fold BatchNormalization operations into Conv, ConvTranspose and Gemm operations before Concat operations.
onnx_fold_batch_norm:
fold_batch_norm: (bool). Whether to fold BatchNormalization operations into Conv, ConvTranspose and Gemm operations.
onnx_fuse_gelu:
fuse_gelu: (bool). Whether to fuse a bunch of separate Gelu operations into a single Gelu operation.
onnx_fuse_instance_norm:
fuse_instance_norm: (bool). Whether to fuse a bunch of separate InstanceNormalization operations into one single InstanceNormalization operation.
onnx_fuse_l2_norm:
fuse_l2_norm: (bool). Whether to fuse a bunch of separate L2Norm operations into one single LpNormalization operation with p=2.
onnx_fuse_layer_norm:
fuse_layer_norm: (bool). Whether to fuse a bunch of LayerNormalization operations into a single LayerNormalization operation.
onnx_optimize_with_ort:
optimize_with_ort: (bool). Whether to optimize the input ONNX model with official ONNXRuntime.
onnx_simplify:
simplify: (bool). Whether to simplify the input model.
onnx_split_large_kernel_pool:
split_large_kernel_pool: (bool). Whether to split large kernel pooling operations into multiple smaller poolings.
onnx_remove_input_init:
remove_input_init: (bool). Whether to remove initializers from the model input.
Usage of Quark ONNX Adapter#
The Quark ONNX Adapter takes a YAML file like the one shown below as input. You can include multiple passes in the same YAML file.
input_model_path: /path/to/input_model.onnx
passes:
onnx_convert_opset_version:
target_opset_version: 21
onnx_simplify:
simplify: true
output_model_path: /path/to/output_model.onnx
And use the following command line.
quark-cli onnx-adapter demo.yaml