quark.onnx.tools.float16
#
Module Contents#
Functions#
- quark.onnx.tools.float16.convert_np_to_float16(np_array: numpy.typing.NDArray[numpy.float32], min_positive_val: float = 1e-07, max_finite_val: float = 10000.0) numpy.typing.NDArray[numpy.float16] #
Convert float32 numpy array to float16 without changing sign or finiteness. Positive values less than min_positive_val are mapped to min_positive_val. Positive finite values greater than max_finite_val are mapped to max_finite_val. Similar for negative values. NaN, 0, inf, and -inf are unchanged.
- quark.onnx.tools.float16.convert_tensor_float_to_float16(tensor: onnx.onnx_pb.TensorProto, min_positive_val: float = 1e-07, max_finite_val: float = 10000.0) onnx.onnx_pb.TensorProto #
Convert tensor float to float16.
- Parameters:
tensor – TensorProto object
- Return tensor_float16:
converted TensorProto object
Example:
from onnxmltools.utils.float16_converter import convert_tensor_float_to_float16 new_tensor = convert_tensor_float_to_float16(tensor)
- quark.onnx.tools.float16.convert_float_to_float16(model: onnx.onnx_pb.ModelProto, min_positive_val: float = 1e-07, max_finite_val: float = 10000.0, keep_io_types: bool = False, disable_shape_infer: bool = False, op_block_list: List[str] | None = None, node_block_list: List[str] | None = None) onnx.onnx_pb.ModelProto #
Convert tensor float type in the ONNX ModelProto input to tensor float16.
- Parameters:
model – ONNX ModelProto object
disable_shape_infer – Type/shape information is needed for conversion to work. Set to True only if the model already has type/shape information for all tensors.
- Returns:
converted ONNX ModelProto object
Examples:
Example 1: Convert ONNX ModelProto object: import float16 new_onnx_model = float16.convert_float_to_float16(onnx_model) Example 2: Convert ONNX model binary file: import onnx import float16 onnx_model = onnx.load_model('model.onnx') new_onnx_model = float16.convert_float_to_float16(onnx_model) onnx.save_model(new_onnx_model, 'new_model.onnx')
- quark.onnx.tools.float16.convert_float_to_float16_model_path(model_path: str, min_positive_val: float = 1e-07, max_finite_val: float = 10000.0, keep_io_types: bool = False) onnx.onnx_pb.ModelProto #
Convert tensor float type in the ONNX Model to tensor float16. *It is to fix an issue that infer_shapes func cannot be used to infer >2GB models. *But this function can be applied to all model sizes. :param model_path: ONNX Model path :return: converted ONNX ModelProto object Examples
#Convert to ONNX ModelProto object and save model binary file: from onnxmltools.utils.float16_converter import convert_float_to_float16_model_path new_onnx_model = convert_float_to_float16_model_path('model.onnx') onnx.save(new_onnx_model, 'new_model.onnx')
- quark.onnx.tools.float16.convert_np_to_float(np_array: numpy.typing.NDArray[numpy.float16], min_positive_val: float = 1e-07, max_finite_val: float = 10000.0) numpy.typing.NDArray[numpy.float32] #
Convert float16 numpy array to float32 without changing sign or finiteness. Similar for negative values. NaN, 0, inf, and -inf are unchanged.
- quark.onnx.tools.float16.convert_tensor_float16_to_float(tensor: onnx.onnx_pb.TensorProto) onnx.onnx_pb.TensorProto #
Convert tensor float16 to float.
- Parameters:
tensor – TensorProto object
- Return tensor_float:
converted TensorProto object
Example:
new_tensor = convert_tensor_float16_to_float(tensor)
- quark.onnx.tools.float16.convert_float16_to_float(model: onnx.onnx_pb.ModelProto, disable_shape_infer: bool = False, op_block_list: List[str] | None = None, node_block_list: List[str] | None = None) onnx.onnx_pb.ModelProto #
Convert tensor float16 type in the ONNX ModelProto input to tensor float.
- Parameters:
model – ONNX ModelProto object
disable_shape_infer – Type/shape information is needed for conversion to work. Set to True only if the model already has type/shape information for all tensors.
- Returns:
converted ONNX ModelProto object
Examples:
Example 1: Convert ONNX ModelProto object: import float16 new_onnx_model = float16.convert_float16_to_float(onnx_model) Example 2: Convert ONNX model binary file: import onnx import float16 onnx_model = onnx.load_model('model.onnx') new_onnx_model = float16.convert_float16_to_float(onnx_model) onnx.save_model(new_onnx_model, 'new_model.onnx')