Exporting Quantized Models#

Quark torch not only supports exporting in popular formats requested by downstream tools, including ONNX, Json-safetensors, and GGUF, but also supports saving and loading in the torch environment.

Exporting#

Onnx Exporting#

PyTorch provides a function to export the ONNX graph at this link. Quark supports the export of onnx graph for int4, in8, fp8 , float16 and bfloat16 quantized models. For int4, int8, and fp8 quantization, the quantization operators used in onnx graph are QuantizerLinear_DequantizerLinear pair. For float16 and bfloat16 quantization, the quantization operators are the cast_cast pair. Mix quantization of int4/uint4 and int8/uint8 is not supported currently. In other words, if the model contains both quantized nodes of uint4/int4 and uint8/int8, this function cannot be used to export the ONNX graph.m Only support weight-only and static quantization for now.

Example of Onnx Exporting#

export_path = "./output_dir"
batch_iter = iter(calib_dataloader)
input_args = next(batch_iter)
if args.quant_scheme in ["w_int4_per_channel_sym", "w_uint4_per_group_asym", "w_int4_per_group_sym", "w_uint4_a_bfloat16_per_group_asym"]:
    uint4_int4_flag = True
else:
    uint4_int4_flag = False

from quark.torch import ModelExporter
from quark.torch.export.config.config import ExporterConfig, JsonExporterConfig
export_config = ExporterConfig(json_export_config=JsonExporterConfig())
exporter = ModelExporter(config=export_config, export_dir=export_path)
exporter.export_onnx_model(model, input_args, uint4_int4_flag=uint4_int4_flag)

Json-Safetensors Exporting#

Json-safetensors exporting format is the default exporting format for Quark, and the file list of this exporting format is the same as the file list of the original HuggingFace model, with quantization information added to these files. Taking the llama2-7b model as an example, the exported file list and added information are as below:

File name

Additional Quantization Information

config.json

Quantization configurations

generation_config.json

-

model*.safetensors

Quantization info (tensors of scaling factor, zero point)

model.safetensors.index.json

Mapping information of scaling factor and zero point to Safetensors files

special_tokens_map.json

-

tokenizer_config.json

-

tokenizer.json

-

Example of Json-Safetensors Exporting#

export_path = "./output_dir"
from quark.torch import ModelExporter
from quark.torch.export.config.config import ExporterConfig, JsonExporterConfig, OnnxExporterConfig
NO_MERGE_REALQ_CONFIG = JsonExporterConfig(weight_format="real_quantized",
                                           pack_method="reorder")
export_config = ExporterConfig(json_export_config=NO_MERGE_REALQ_CONFIG, onnx_export_config=OnnxExporterConfig())
exporter = ModelExporter(config=export_config, export_dir=export_path)
exporter.export_model_info(model, quant_config=quant_config)

By default, ModelExporter.export_model_info exports models using a Quark-specific format for the checkpoint and quantization_config format in the config.json file. This format may not directly be usable by some downstream libraries (AutoAWQ, vLLM).

Until downstream libraries support Quark quantized models, one may export models so that the weight checkpoint and config.json file targets a specific downstream libraries, using custom_mode="awq" or custom_mode="fp8". Example:

Json-Safetensors Importing#

Quark provides the importing function for Json-safetensors export files. In other words, these files can be reloaded into Quark. After reloading, the weights of the quantized operators in the model are stored in the real_quantized format.

Currently, this importing function supports weight-only, static, and dynamic quantization for FP8 and AWQ. For other quantization methods, only weight-only and static quantization are supported.

Example of Json-Safetensors Importing#

from quark.torch import import_model_info
safetensors_model_dir = "./output_dir/json-safetensors"
model = import_model_info(model, model_info_dir=safetensors_model_dir)

GGUF Exporting#

Currently, only support asymetric int4 per_group weight-only quantization, and the group_size must be 32.The models supported include Llama2-7b, Llama2-13b, Llama2-70b, and Llama3-8b.

Example of GGUF Exporting#

export_path = "./output_dir"
from quark.torch import ModelExporter
from quark.torch.export.config.config import ExporterConfig, JsonExporterConfig
export_config = ExporterConfig(json_export_config=JsonExporterConfig())
exporter = ModelExporter(config=export_config, export_dir=export_path)
exporter.export_gguf_model(model, tokenizer_path, model_type)

After running the code above successfully, there will be a .gguf file under export_path, ./output_dir/llama.gguf for example.

Saving & Loading#

Saving#

Save the network architecture or configurations and parameters of the quantized model.

Support both eager and fx-graph model quantization.

For eager mode quantization, the model’s configurations are stored in json file, and parameters including weight, bias, scale, and zero_point are stored in safetensors file.

For fx_graph mode quantization, the model’s network architecture and parameters are stored in pth file.

Example of Saving in Eager Mode#

from quark.torch import save_params
save_params(model, model_type=model_type, export_dir="./save_dir")

Example of Saving in FX-graph Mode#

from quark.torch.export.api import save_params
save_params(model,
            model_type=model_type,
            args=example_inputs,
            export_dir="./save_dir",
            quant_mode=QuantizationMode.fx_graph_mode)

Loading#

Instantiate a quantized model from saved model files, which is generated using the above saving function.

Support both eager and fx-graph model quantization.

Only support weight-only and static quantization for now.

Example of Loading in Eager Mode#

from quark.torch import load_params
model = load_params(model, json_path=json_path, safetensors_path=safetensors_path)

Example of Loading in FX-graph Mode#

from quark.torch.quantization.api import load_params
model = load_params(pth_path=model_file_path, quant_mode=QuantizationMode.fx_graph_mode)