Configuring PyTorch Quantization#
This topic describes the steps on how to set the quantization configuration in AMD Quark for PyTorch.
Configuration of quantization in AMD Quark for PyTorch
is set using Python dataclass
because it is rigorous and helps you avoid typos. The class Config
in quark.torch.quantization.config.config
is provided for configuration. There are several steps to set up the configuration:
Step 1: Configure
QuantizationSpec
fortorch.Tensors
. Specify attributes such asdtype
,observer_cls
, etc.Step 2: Establish
QuantizationConfig
fornn.Module
. Define theQuantizationSpec
ofinput_tensors
,output_tensors
,weight
, andbias
.Step 3 [Optional]: Set
AlgoConfig
for the model.Step 4: Set up the overall
Config
for the model. This includes:
Step 1: Configuring QuantizationSpec
for torch.Tensors#
The class QuantizationSpec
aims to describe the quantization specification for each tensor, including dtype, observer_cls, qscheme, is_dynamic, symmetric, etc. For example:
from quark.torch.quantization.config.config import QuantizationSpec
from quark.torch.quantization.config.type import Dtype, QSchemeType, ScaleType, RoundType
from quark.torch.quantization.observer.observer import PlaceholderObserver, PerTensorMinMaxObserver, PerGroupMinMaxObserver
BFLOAT16_SPEC = QuantizationSpec(dtype=Dtype.bfloat16, observer_cls=PlaceholderObserver)
FP8_PER_TENSOR_SPEC = QuantizationSpec(dtype=Dtype.fp8_e4m3,
qscheme=QSchemeType.per_tensor,
observer_cls=PerTensorMinMaxObserver,
is_dynamic=False)
INT8_PER_TENSOR_SPEC = Int8PerTensorSpec(observer_method="min_max",
symmetric=True,
scale_type=ScaleType.float,
round_method=RoundType.half_even,
is_dynamic=False).to_quantization_spec()
UINT4_PER_GROUP_ASYM_SPEC = QuantizationSpec(dtype=Dtype.uint4,
observer_cls=PerGroupMinMaxObserver,
symmetric=False,
scale_type=ScaleType.float,
round_method=RoundType.half_even,
qscheme=QSchemeType.per_group,
ch_axis=1,
is_dynamic=False,
group_size=128)
Details about each parameters of QuantizationSpec
as well as of each utility classes (as Int8PerTensorSpec
to define more easily the quantization spec) are available in the API documentation.
Step 2: Establishing QuantizationConfig
for nn.Module#
The class QuantizationConfig
is used to describe the global, layer-type-wise, or layer-wise quantization information for each nn.Module
, such as nn.Linear
. For example:
from quark.torch.quantization.config.config import QuantizationConfig
W_FP8_A_FP8_PER_TENSOR_CONFIG = QuantizationConfig(input_tensors=FP8_PER_TENSOR_SPEC,
weight=FP8_PER_TENSOR_SPEC)
W_INT8_A_INT8_PER_TENSOR_CONFIG = QuantizationConfig(input_tensors=INT8_PER_TENSOR_SPEC,
weight=INT8_PER_TENSOR_SPEC)
W_UINT4_PER_GROUP_CONFIG = QuantizationConfig(weight=UINT4_PER_GROUP_ASYM_SPEC)
Details about each parameters of QuantizationConfig
are available in the API documentation.
Step 3: [Optional] Setting AlgoConfig
for the model#
If you want to use AMD Quark’s advanced algorithms such as AWQ, you should set up the required configuration.
You should possess a thorough understanding of the methods and hyperparameters associated with the algorithms before configuring them. Algorithms only support certain QuantizationSpec
. Ensure compatibility before running.
Here is the algorithms configuration of Llama2-7b as an example:
from quark.torch.algorithm.awq.awq import AwqProcessor
from quark.torch.algorithm.awq.smooth import SmoothQuantProcessor
from quark.torch.algorithm.gptq.gptq import GptqProcessor
from quark.torch.quantization.config.config import AWQConfig, SmoothQuantConfig, GPTQConfig
ALGORITHM_CONFIG=AWQConfig(
scaling_layers=[
{'prev_op': 'input_layernorm', 'layers': ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj'], 'inp': 'self_attn.q_proj', 'module2inspect': 'self_attn'},
{'prev_op': 'self_attn.v_proj', 'layers': ['self_attn.o_proj'], 'inp': 'self_attn.o_proj'},
{'prev_op': 'post_attention_layernorm', 'layers': ['mlp.gate_proj', 'mlp.up_proj'], 'inp': 'mlp.gate_proj', 'module2inspect': 'mlp', 'help': 'linear 1'},
{'prev_op': 'mlp.up_proj', 'layers': ['mlp.down_proj'], 'inp': 'mlp.down_proj', 'help': 'linear 2'}],
model_decoder_layers='model.layers')
ALGORITHM_CONFIG=SmoothQuantConfig(
alpha=0.5,
scale_clamp_min=0.001,
scaling_layers=[
{'prev_op': 'input_layernorm', 'layers': ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj'], 'inp': 'self_attn.q_proj', 'module2inspect': 'self_attn'},
{'prev_op': 'self_attn.v_proj', 'layers': ['self_attn.o_proj'], 'inp': 'self_attn.o_proj'},
{'prev_op': 'post_attention_layernorm', 'layers': ['mlp.gate_proj', 'mlp.up_proj'], 'inp': 'mlp.gate_proj', 'module2inspect': 'mlp', 'help': 'linear 1'},
{'prev_op': 'mlp.up_proj', 'layers': ['mlp.down_proj'], 'inp': 'mlp.down_proj', 'help': 'linear 2'}],
model_decoder_layers='model.layers')
ALGORITHM_CONFIG = GPTQConfig(
damp_percent=0.01,
desc_act=True,
static_groups=True,
true_sequential=True,
inside_layer_modules=['self_attn.k_proj', 'self_attn.v_proj', 'self_attn.q_proj', 'self_attn.o_proj', 'mlp.up_proj', 'mlp.gate_proj', 'mlp.down_proj'],
model_decoder_layers='model.layers'
)
ALGORITHM_CONFIG = RotationConfig(
scaling_layers = {
"first_layer": [
{"prev_modules": ["model.embed_tokens"],
"norm_module": "model.layers.layer_id.input_layernorm",
"next_modules": ["model.layers.layer_id.self_attn.q_proj", "model.layers.layer_id.self_attn.k_proj", "model.layers.layer_id.self_attn.v_proj"]},
{"prev_modules": ["model.layers.layer_id.self_attn.o_proj"],
"norm_module": "model.layers.layer_id.post_attention_layernorm",
"next_modules": ["model.layers.layer_id.mlp.up_proj", "model.layers.layer_id.mlp.gate_proj"]}],
"middle_layers": [
{"prev_modules": ["model.layers.pre_layer_id.mlp.down_proj"],
"norm_module": "model.layers.layer_id.input_layernorm",
"next_modules": ["model.layers.layer_id.self_attn.q_proj", "model.layers.layer_id.self_attn.k_proj", "model.layers.layer_id.self_attn.v_proj"]},
{"prev_modules": ["model.layers.layer_id.self_attn.o_proj"],
"norm_module": "model.layers.layer_id.post_attention_layernorm",
"next_modules": ["model.layers.layer_id.mlp.up_proj", "model.layers.layer_id.mlp.gate_proj"]}],
"last_layer": [
{"prev_modules": ["model.layers.layer_id.mlp.down_proj"],
"norm_module": "model.norm",
"next_modules": ["lm_head"]}]
}
)
ALGORITHM_CONFIG = QuaRotConfig(
scaling_layers = {
"first_layer": [
{"prev_modules": ["model.embed_tokens"],
"norm_module": "model.layers.layer_id.input_layernorm",
"next_modules": ["model.layers.layer_id.self_attn.q_proj", "model.layers.layer_id.self_attn.k_proj", "model.layers.layer_id.self_attn.v_proj"]},
{"prev_modules": ["model.layers.layer_id.self_attn.o_proj"],
"norm_module": "model.layers.layer_id.post_attention_layernorm",
"next_modules": ["model.layers.layer_id.mlp.up_proj", "model.layers.layer_id.mlp.gate_proj"]}],
"middle_layers": [
{"prev_modules": ["model.layers.pre_layer_id.mlp.down_proj"],
"norm_module": "model.layers.layer_id.input_layernorm",
"next_modules": ["model.layers.layer_id.self_attn.q_proj", "model.layers.layer_id.self_attn.k_proj", "model.layers.layer_id.self_attn.v_proj"]},
{"prev_modules": ["model.layers.layer_id.self_attn.o_proj"],
"norm_module": "model.layers.layer_id.post_attention_layernorm",
"next_modules": ["model.layers.layer_id.mlp.up_proj", "model.layers.layer_id.mlp.gate_proj"]}],
"last_layer": [
{"prev_modules": ["model.layers.layer_id.mlp.down_proj"],
"norm_module": "model.norm",
"next_modules": ["lm_head"]}]
}
)
For AWQ, AMD Quark for PyTorch only supports AWQ
with quantization data type as uint4/int4
and per group
, running on Linux
with the GPU mode
for now. More details are available in the AWQConfig
documentation.
For SmoothQuant, more details are available in the SmoothQuantConfig
documentation. A high-level explanation about SmoothQuant is available in Activation/weight smoothing (SmoothQuant) documentation.
For GPTQ, AMD Quark for PyTorch only supports GPTQ
with quantization
data type as uint4/int4
and per group
, running on Linux
with
the GPU mode
for now. More details are available in the GPTQConfig
documentation.
Step 4: Setting up the overall Config
for the model.#
In quark.torch.quantization.config.config.Config
, you should set instances for all information of quantization (all instances are optional except global_quant_config
).
For example:
# Example 1: W_INT8_A_INT8_PER_TENSOR
quant_config = Config(global_quant_config=W_INT8_A_INT8_PER_TENSOR_CONFIG)
# Example 2: W_UINT4_PER_GROUP with advanced algorithm
quant_config = Config(global_quant_config=W_UINT4_PER_GROUP_CONFIG, algo_config=ALGORITHM_CONFIG)
EXCLUDE_LAYERS = ["lm_head"] # For language models
quant_config = replace(quant_config, exclude=EXCLUDE_LAYERS)
# Example 3: W_FP8_A_FP8_PER_TENSOR with KV_CACHE_FP8
quant_config = Config(global_quant_config=W_FP8_A_FP8_PER_TENSOR_CONFIG)
KV_CACHE_CFG = {
"*v_proj":
QuantizationConfig(input_tensors=quant_config.global_quant_config.input_tensors,
weight=quant_config.global_quant_config.weight,
output_tensors=FP8_PER_TENSOR_SPEC),
"*k_proj":
QuantizationConfig(input_tensors=quant_config.global_quant_config.input_tensors,
weight=quant_config.global_quant_config.weight,
output_tensors=FP8_PER_TENSOR_SPEC),
}
quant_config = replace(quant_config, layer_quant_config=KV_CACHE_CFG)
More details are available in the quark.torch.quantization.config.config.Config
documentation.