Configuring PyTorch Quantization#
This topic describes the steps on how to set the quantization configuration in Quark for PyTorch.
Configuration of quantization in Quark for PyTorch is set by Python dataclass because it is rigorous and can help users avoid typos.
We provide a class Config in quark.torch.quantization.config.config for configuration. There are several steps to set up the configuration.
Step 1: Configure
QuantizationSpecfor torch.Tensors. Specify attributes such as dtype, observer_cls, etc.Step 2: Establish
QuantizationConfigfor nn.Module. Define the QuantizationSpec of input_tensors, output_tensors, weight, and bias.Step 3: [Optional] Set
AlgoConfigfor the model.Step 4: Set up the overall
Configfor the model. This includes:
Step 1: Configuring QuantizationSpec for torch.Tensors#
QuantizationSpec aims to describe the quantization specification for each tensor, including dtype, observer_cls, qscheme, is_dynamic, symmetric, etc. For example:
from quark.torch.quantization.config.config import QuantizationSpec
from quark.torch.quantization.config.type import Dtype, QSchemeType, ScaleType, RoundType
from quark.torch.quantization.observer.observer import PlaceholderObserver, PerTensorMinMaxObserver, PerGroupMinMaxObserver
BFLOAT16_SPEC = QuantizationSpec(dtype=Dtype.bfloat16, observer_cls=PlaceholderObserver)
FP8_PER_TENSOR_SPEC = QuantizationSpec(dtype=Dtype.fp8_e4m3,
qscheme=QSchemeType.per_tensor,
observer_cls=PerTensorMinMaxObserver,
is_dynamic=False)
INT8_PER_TENSOR_SPEC = Int8PerTensorSpec(observer_method="min_max",
symmetric=True,
scale_type=ScaleType.float,
round_method=RoundType.half_even,
is_dynamic=False)
UINT4_PER_GROUP_ASYM_SPEC = QuantizationSpec(dtype=Dtype.uint4,
observer_cls=PerGroupMinMaxObserver,
symmetric=False,
scale_type=ScaleType.float,
round_method=RoundType.half_even,
qscheme=QSchemeType.per_group,
ch_axis=1,
is_dynamic=False,
group_size=128)
For parameter explanation:
Name |
Description |
Class Type |
Option |
|---|---|---|---|
|
The data type for quantization. |
|
|
|
The class of observer to be used for determining quantization parameters. |
|
|
|
Specifies whether dynamic or static quantization should be used. |
|
True, False, None |
|
The scale type to be used for quantization |
|
|
|
The rounding method during quantization. |
|
|
|
The quantization scheme to use. |
|
|
|
The channel axis for per-channel quantization. |
|
int, None |
|
Specifies whether dynamic or static quantization should be used. |
|
True, False, None |
|
The size of the group for per-group quantization. |
|
int, None |
Step 2: Establishing QuantizationConfig for nn.Module#
QuantizationConfig is used to describe the global, layer-type-wise, or layer-wise quantization information for each nn.Module, such as nn.Linear. For example,
from quark.torch.quantization.config.config import QuantizationConfig
W_FP8_A_FP8_PER_TENSOR_CONFIG = QuantizationConfig(input_tensors=FP8_PER_TENSOR_SPEC,
weight=FP8_PER_TENSOR_SPEC)
W_INT8_A_INT8_PER_TENSOR_CONFIG = QuantizationConfig(input_tensors=INT8_PER_TENSOR_SPEC,
weight=INT8_PER_TENSOR_SPEC)
W_UINT4_PER_GROUP_CONFIG = QuantizationConfig(weight=UINT4_PER_GROUP_ASYM_SPEC)
For parameter explanation:
Name |
Class Type |
Default |
|---|---|---|
|
|
None |
|
|
None |
|
|
None |
|
|
None |
Step 3: [Optional] Setting AlgoConfig for the model#
If users want to use Quark’s advanced algorithms such as AWQ, they should set up the configuration for them.
Users should possess a thorough understanding of the methods and hyper-parameters associated with the algorithms prior to configuring them!
Algorithms only support some QuantizationSpec, please make sure before running.
Here we use the algorithms configuration of Llama2-7b as the example:
from quark.torch.algorithm.awq.awq import AwqProcessor
from quark.torch.algorithm.awq.smooth import SmoothQuantProcessor
from quark.torch.algorithm.gptq.gptq import GptqProcessor
from quark.torch.quantization.config.config import AWQConfig, SmoothQuantConfig, GPTQConfig
ALGORITHM_CONFIG=AWQConfig(
scaling_layers=[
{'prev_op': 'input_layernorm', 'layers': ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj'], 'inp': 'self_attn.q_proj', 'module2inspect': 'self_attn'},
{'prev_op': 'self_attn.v_proj', 'layers': ['self_attn.o_proj'], 'inp': 'self_attn.o_proj'},
{'prev_op': 'post_attention_layernorm', 'layers': ['mlp.gate_proj', 'mlp.up_proj'], 'inp': 'mlp.gate_proj', 'module2inspect': 'mlp', 'help': 'linear 1'},
{'prev_op': 'mlp.up_proj', 'layers': ['mlp.down_proj'], 'inp': 'mlp.down_proj', 'help': 'linear 2'}],
model_decoder_layers='model.layers')
ALGORITHM_CONFIG=SmoothQuantConfig(
alpha=0.5,
scale_clamp_min=0.001,
scaling_layers=[
{'prev_op': 'input_layernorm', 'layers': ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj'], 'inp': 'self_attn.q_proj', 'module2inspect': 'self_attn'},
{'prev_op': 'self_attn.v_proj', 'layers': ['self_attn.o_proj'], 'inp': 'self_attn.o_proj'},
{'prev_op': 'post_attention_layernorm', 'layers': ['mlp.gate_proj', 'mlp.up_proj'], 'inp': 'mlp.gate_proj', 'module2inspect': 'mlp', 'help': 'linear 1'},
{'prev_op': 'mlp.up_proj', 'layers': ['mlp.down_proj'], 'inp': 'mlp.down_proj', 'help': 'linear 2'}],
model_decoder_layers='model.layers')
ALGORITHM_CONFIG = GPTQConfig(
damp_percent=0.01,
desc_act=True,
static_groups=True,
true_sequential=True,
inside_layer_modules=['self_attn.k_proj', 'self_attn.v_proj', 'self_attn.q_proj', 'self_attn.o_proj', 'mlp.up_proj', 'mlp.gate_proj', 'mlp.down_proj'],
model_decoder_layers='model.layers'
)
For AWQ, Quark for PyTorch only supports AWQ with quantization data type as uint4/int4 and per group, running on Linux with the GPU mode for now. Parameter explanation:
Name |
Class Type |
Default |
|---|---|---|
|
|
None |
|
|
None |
For SmoothQuant parameter explanation:
Name |
Class Type |
Default |
|---|---|---|
|
float |
1 |
|
float |
1e-3 |
|
|
None |
|
|
None |
Name |
Class Type |
Default |
|---|---|---|
|
float |
0.01 |
|
bool |
True |
|
bool |
True |
|
bool |
True |
|
|
None |
|
|
None |
More details about SmoothQuant parameters are available in Activation/weight smoothing (SmoothQuant) documentation.
For GPTQ, Quark for PyTorch only supports GPTQ with quantization
data type as uint4/int4 and per group, running on Linux with
the GPU mode for now. parameter explanation:
Name |
Class Type |
Default |
|
float |
0.01 |
|
bool |
True |
|
bool |
True |
|
bool |
True |
|
|
None |
|
|
None |
Step 4: Setting up the overall Config for the model.#
In Config, users should set instances for all information of quantization (all instances are optional except global_quant_config).
For example:
# Example 1: W_INT8_A_INT8_PER_TENSOR
quant_config = Config(global_quant_config=W_INT8_A_INT8_PER_TENSOR_CONFIG)
# Example 2: W_UINT4_PER_GROUP with advanced algorithm
quant_config = Config(global_quant_config=W_UINT4_PER_GROUP_CONFIG, algo_config=ALGORITHM_CONFIG)
EXCLUDE_LAYERS = ["lm_head"] # For language models
quant_config = replace(quant_config, exclude=EXCLUDE_LAYERS)
# Example 3: W_FP8_A_FP8_PER_TENSOR with KV_CACHE_FP8
quant_config = Config(global_quant_config=W_FP8_A_FP8_PER_TENSOR_CONFIG)
KV_CACHE_CFG = {
"*v_proj":
QuantizationConfig(input_tensors=quant_config.global_quant_config.input_tensors,
weight=quant_config.global_quant_config.weight,
output_tensors=FP8_PER_TENSOR_SPEC),
"*k_proj":
QuantizationConfig(input_tensors=quant_config.global_quant_config.input_tensors,
weight=quant_config.global_quant_config.weight,
output_tensors=FP8_PER_TENSOR_SPEC),
}
quant_config = replace(quant_config, layer_quant_config=KV_CACHE_CFG)
For parameter explanation:
Name |
Class Type |
Option |
Default |
|---|---|---|---|
|
|
||
|
|
None |