quark.torch.export.gguf_export.utils#

Module Contents#

Classes#

class quark.torch.export.gguf_export.utils.BaseVocab#

Base class for protocol classes.

Protocol classes are defined as:

class Proto(Protocol):
    def meth(self) -> int:
        ...

Such classes are primarily used with static type checkers that recognize structural subtyping (static duck-typing), for example:

class C:
    def meth(self) -> int:
        return 0

def func(x: Proto) -> int:
    return x.meth()

func(C())  # Passes static type check

See PEP 544 for details. Protocol classes decorated with @typing.runtime_checkable act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures. Protocol classes can be generic, they are defined as:

class GenProto(Protocol[T]):
    def meth(self) -> T:
        ...
class quark.torch.export.gguf_export.utils.NoVocab#

Base class for protocol classes.

Protocol classes are defined as:

class Proto(Protocol):
    def meth(self) -> int:
        ...

Such classes are primarily used with static type checkers that recognize structural subtyping (static duck-typing), for example:

class C:
    def meth(self) -> int:
        return 0

def func(x: Proto) -> int:
    return x.meth()

func(C())  # Passes static type check

See PEP 544 for details. Protocol classes decorated with @typing.runtime_checkable act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures. Protocol classes can be generic, they are defined as:

class GenProto(Protocol[T]):
    def meth(self) -> T:
        ...
class quark.torch.export.gguf_export.utils.Vocab(base_path: pathlib.Path)#

Base class for protocol classes.

Protocol classes are defined as:

class Proto(Protocol):
    def meth(self) -> int:
        ...

Such classes are primarily used with static type checkers that recognize structural subtyping (static duck-typing), for example:

class C:
    def meth(self) -> int:
        return 0

def func(x: Proto) -> int:
    return x.meth()

func(C())  # Passes static type check

See PEP 544 for details. Protocol classes decorated with @typing.runtime_checkable act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures. Protocol classes can be generic, they are defined as:

class GenProto(Protocol[T]):
    def meth(self) -> T:
        ...
class quark.torch.export.gguf_export.utils.BpeVocab(base_path: pathlib.Path)#

Base class for protocol classes.

Protocol classes are defined as:

class Proto(Protocol):
    def meth(self) -> int:
        ...

Such classes are primarily used with static type checkers that recognize structural subtyping (static duck-typing), for example:

class C:
    def meth(self) -> int:
        return 0

def func(x: Proto) -> int:
    return x.meth()

func(C())  # Passes static type check

See PEP 544 for details. Protocol classes decorated with @typing.runtime_checkable act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures. Protocol classes can be generic, they are defined as:

class GenProto(Protocol[T]):
    def meth(self) -> T:
        ...
class quark.torch.export.gguf_export.utils.LlamaHfVocab(base_path: pathlib.Path)#

Base class for protocol classes.

Protocol classes are defined as:

class Proto(Protocol):
    def meth(self) -> int:
        ...

Such classes are primarily used with static type checkers that recognize structural subtyping (static duck-typing), for example:

class C:
    def meth(self) -> int:
        return 0

def func(x: Proto) -> int:
    return x.meth()

func(C())  # Passes static type check

See PEP 544 for details. Protocol classes decorated with @typing.runtime_checkable act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures. Protocol classes can be generic, they are defined as:

class GenProto(Protocol[T]):
    def meth(self) -> T:
        ...